Chapter 9
Inferences from Two Samples
9-1 Overview
9-2 Inferences about Two Proportions
9-3 Inferences about Two Means:
Independent Samples
9-4 Inferences about Matched Pairs
9-5 Comparing Variation in Two Samples

Overview

There are many important and meaningful situations in which it becomes necessary to compare two sets of sample data.

Inferences about Two Proportions

Slide 3

Assumptions

1. We have proportions from two independent simple random samples.
2. For both samples, the conditions $n p \geq 5$ and $n q \geq 5$ are satisfied.

Notation for Two Proportions

For population 1, we let:
$p_{1}=$ population proportion
$n_{1}=$ size of the sample
$x_{1}=$ number of successes in the sample
$\hat{p}_{1}=x_{x_{1}}^{n_{1}}$ (the sample proportion)
$\hat{q}_{1}=1-\hat{p}_{1}$
The corresponding meanings are attached to $p_{2}, n_{2}, x_{2}, \hat{p}_{2}$. and \hat{q}_{2}, which come from population 2 . Copyright © 2004 Pearson Education, Inc.

Pooled Estimate of

 Slide 5$$
\boldsymbol{p}_{1} \text { and } \boldsymbol{p}_{2}
$$

* The pooled estimate of \boldsymbol{p}_{1} and \boldsymbol{p}_{2} is denoted by $\overline{\boldsymbol{p}}$.

$$
\bar{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}
$$

$\overline{\boldsymbol{q}}=\mathbf{1}-\overline{\boldsymbol{p}}$

Test Statistic for Two Proportions

For $H_{0}: \boldsymbol{p}_{1}=\boldsymbol{p}_{2}, \quad H_{0}: \boldsymbol{p}_{1} \geq \boldsymbol{p}_{2}, \quad H_{0}: \boldsymbol{p}_{1} \leq \boldsymbol{p}_{2}$ $H_{1}: \boldsymbol{p}_{1} \neq \boldsymbol{p}_{2}, \quad H_{1}: \boldsymbol{p}_{1}<\boldsymbol{p}_{2}, \quad H_{1}: \boldsymbol{p}_{1}>\boldsymbol{p}_{2}$

$$
Z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\bar{p} \bar{q}}{n_{1}}+\frac{\bar{p} \bar{q}}{n_{2}}}}
$$

Test Statistic for Two Proportions

For $H_{0}: \boldsymbol{p}_{1}=\boldsymbol{p}_{2}, \quad H_{0}: \boldsymbol{p}_{1} \geq \boldsymbol{p}_{2}, \quad \boldsymbol{H}_{0}: \boldsymbol{p}_{1} \leq \boldsymbol{p}_{2}$

$$
H_{1}: \boldsymbol{p}_{1} \neq \boldsymbol{p}_{2}, \quad H_{1}: \boldsymbol{p}_{1}<\boldsymbol{p}_{2}, \quad H_{1}: \boldsymbol{p}_{1}>\boldsymbol{p}_{2}
$$

where $\boldsymbol{p}_{1}-\boldsymbol{p}_{2}=\mathbf{0} \quad$ (assumed in the null hypothesis)

$$
\hat{\boldsymbol{p}}_{1}=\frac{x_{1}}{n_{1}} \text { and } \hat{\boldsymbol{p}}_{2}=\frac{x_{2}}{n_{2}}
$$

$$
\bar{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}} \quad \text { and } \quad \bar{q}=1-\bar{p}
$$

Copyright © 2004 Pearson Education, Inc

Example: For the sample data listed in

Table 8-1, use a 0.05 significance level to tes slide 9 the claim that the proportion of black drivers stopped by the police is greater than the proportion of white drivers who are stopped.
$n_{1}=200$
$x_{1}=24$
$\begin{array}{ll}\hat{p}_{1}=\frac{x_{1}}{n_{1}}=\frac{24}{200}=0.120 & \bar{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}=\frac{24+147}{200+1400}=0.106875 \\ n_{2}=1400 & \bar{q}=1-0.106875=0.893125 . \\ x_{2}=147 & \\ \hat{p}_{2}=\frac{x_{2}}{n_{2}}=\frac{147}{1400}=0.105 & \\ \end{array}$

Example: For the sample data listed in

Table 8-1, use a 0.05 significance level to tes \qquad the claim that the proportion of black drivers stopped by the police is greater than the proportion of white drivers who are stopped.

$n_{1}=200$	
$x_{1}=24$	$z=0.64$
$\hat{p}_{1}=\frac{x_{1}}{n_{1}}=\frac{24}{200}=0.120$	This is a right-tailed test, so the P- value is the area to the right of the test statistic $z=0.64$.
$n_{2}=1400$	Because the P-value is 0.2611. $x_{2}=147$ $\hat{p}_{2}=\frac{x_{2}}{n_{2}}=\frac{147}{1400}=0.105$greater than the significance level of α $=0.05$, we fail to reject the null hypothesis.

Example: For the sample data listed in
Table 8-1, use a 0.05 significance level to test
the claim that the proportion of black drivers stopped by the police is greater than the proportion of white drivers who are stopped.
Example: For the sample data listed in
Table 8-1, use a 0.05 significance level to test
the claim that the proportion of black drivers stopped by the police is greater than the proportion of white drivers who are stopped.

Copyright © 2004 Pearson Education, Inc.
$n_{1}=2$
$x_{1}=$
$\hat{p}_{1}=\frac{x_{1}}{n_{1}}=\frac{24}{200}=0.1$

$$
z=\frac{(0.120-0.105)-0}{\sqrt{\frac{(0.106875)(0.893125)}{200}+\frac{(0.106875)(0.893125)}{1400}}}
$$

$n_{2}=1400$
$x_{2}=147$
$\hat{p}_{2}=\frac{x_{2}}{n_{2}}=\frac{147}{1400}=0.105$

Example: For the sample data listed in

Table 8-1, use a 0.05 significance level to test slide 12 the claim that the proportion of black drivers stopped by the police is greater than the proportion of white drivers who are stopped.
$n_{1}=200$
$x_{1}=24 \quad z=0.64$
Because we fail to reject the null
hypothesis, we conclude that there is not sufficient evidence to support the claim that the proportion of black drivers stopped by police is greater than that for white drivers. This does not mean that racial profiling has been disproved. The evidence might be strong enough with more data.

Example: For the sample data listed in

Table 8-1, use a 0.05 significance level to test slide 13 the claim that the proportion of black drivers stopped by the police is greater than the proportion of white drivers who are stopped.

$$
\begin{aligned}
& n_{1}=200 \\
& x_{1}=24 \\
& \hat{p_{1}}=\frac{x_{1}}{n_{1}}=\frac{24}{200}=0.120 \\
& n_{2}=1400 \\
& x_{2}=147 \\
& \hat{p_{2}}=\frac{x_{2}}{n_{2}}=\frac{147}{1400}=0.105
\end{aligned}
$$

Copyrit 2004 Pa

$$
\begin{gathered}
\text { Confidence Interval } \\
\text { Estimate of } \boldsymbol{p}_{1}-\boldsymbol{p}_{2} \\
\left(\hat{\boldsymbol{p}}_{1}-\hat{\boldsymbol{p}}_{2}\right)-\boldsymbol{E}<\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right)<\left(\hat{\boldsymbol{p}}_{1}-\hat{\boldsymbol{p}}_{2}\right)+\boldsymbol{E} \\
\text { where } \boldsymbol{E}=z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{\hat{p}} \hat{q}_{2}}{n_{2}}}
\end{gathered}
$$

Example: For the sample data listed in

Table 8-1, use a 0.05 significance level to tes the claim that the proportion of black drivers stopped by the police is greater than the proportion of white drivers who are stopped.

$$
\begin{aligned}
& n_{1}=200(0.120-0.105)-0.040<\left(p_{1}-p_{2}\right)<(0.120-0.105)+0.040 \\
& x_{1}=24 \\
& \hat{p}_{1}=\frac{x_{1}}{n_{1}}=\frac{24}{200}=0.120 \\
& n_{2}=1400 \\
& x_{2}=147 \\
& \hat{p_{2}}=\frac{x_{2}}{n_{2}}=\frac{147}{1400}=0.105 \\
& \text { Copyright © 2004 Pearson Education, Inc. }
\end{aligned}
$$

Using TI Calculator:

slide 14

Using TI Calculator:

1 EDIT CALC MESTE 6i2 Interval... 8: Interval... 9:2-S Mmp Int... A: 1 - Sy2-PropZInt...	
	4 Compare these results with the example presented in the last few slides.

$$
\begin{aligned}
& \text { Example: For the sample data listed in } \\
& \text { slide } 16 \\
& \text { Table 8-1, find a } 90 \% \text { confidence interval estimate of the } \\
& \text { difference between the two population proportions. } \\
& n_{1}=200 \\
& x_{1}=24 \\
& \boldsymbol{E}=Z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}} \\
& \hat{p}_{1}=\frac{x_{1}}{n_{1}}=\frac{24}{200}=0.120 \\
& E=1.645 \sqrt{\frac{(.12)(.88)+(0.105)(0.895)}{200}} \\
& n_{2}=1400 \\
& x_{2}=147 \quad E=0.400 \\
& \oint_{2}=\frac{x_{2}}{n_{2}}=\frac{147}{1400}=0.105
\end{aligned}
$$

Definitions

Two Samples: Independent

The sample values selected from one population are not related or somehow paired with the sample values selected from the other population.
If the values in one sample are related to the values in the other sample, the samples are dependent. Such samples are often referred to as matched pairs or paired samples.

Hypothesis Tests

Test Statistic for Two Means:

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

Test Statistic for Two Means:
\(\left.\begin{array}{ll}Degrees of freedom: In this book we use this estimate: d f=

smaller of n_{1}-1 and n_{2}-1 .\end{array}\right]\)| Refer to Table A-3. Use the procedure |
| :--- |
| summarized in Figure 7-6. |

Assumptions

1. The two samples are independent.
2. Both samples are simple random samples.
3. Either or both of these conditions are satisfied: The two sample sizes are both large (with $n_{1}>30$ and $n_{2}>30$) or both samples come from populations having normal distributions.
ritical values:
to Table A-3.

McGwire Versus Bonds

Data Set 30 in Appendix B includes the distances of the home runs hit in record-setting seasons by Mark McGwire and Barry Bonds. Sample statistics are shown. Use a 0.05 significance level to test the claim that the distances come from populations with different means.

McGwire Bonds
n
\bar{x}
70
418.5
403.7
s

McGwire Versus Bonds

\qquad
Claim: $\mu_{1} \neq \mu_{2}$
$H_{0}: \mu_{1}=\mu_{2}$
$H_{1}: \mu_{1} \neq \mu_{2}$
$\alpha=0.05$
$n_{1}-1=69$
$n_{2}-1=72$
$d f=69$
$t_{.025}=1.994$

McGwire Versus Bonds

 Slide 25Test Statistic for Two Means:

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

McGwire Versus Bonds
Claim: $\mu_{1} \neq \mu_{2}$
$H_{0}: \mu_{1}=\mu_{2}$
$H_{1}: \mu_{1} \neq \mu_{2}$
$\alpha=0.05$

Figure 8-2
Copyright © 2004 Pearson Education, Inc

McGwire Versus Bonds

Slide 26
Test Statistic for Two Means:

$$
\begin{aligned}
& \boldsymbol{t}= \frac{(418.5-403.7)-0}{\sqrt{\frac{45.5^{2}}{70}+\frac{30.6^{2}}{73}}} \\
&=2.273
\end{aligned}
$$

McGwire Versus Bonds

Claim: $\mu_{1} \neq \mu_{2}$
$H_{0}: \mu_{1}=\mu_{2}$
$H_{1}: \mu_{1} \neq \mu_{2}$
5
$\alpha=0.05$
There is significant evidence to support the claim that there is a difference between the mean home run distances of Mark McGwire and Barry Bonds.

Confidence Intervals

slide 30

$\left(\bar{X}_{1}-\bar{X}_{2}\right)-E<\left(\mu_{1}-\mu_{2}\right)<\left(\bar{X}_{1}-\bar{X}_{2}\right)+E$
where $\boldsymbol{E}=\boldsymbol{t}_{\alpha / 2} \sqrt{\frac{\boldsymbol{s}_{1}{ }^{2}}{n_{1}}+\frac{\boldsymbol{s}_{2}{ }^{2}}{n_{2}}}$

McGwire Versus Bonds

Using the sample data given in the preceding example, construct a 95% confidence interval estimate of the difference between the mean home run distances of Mark McGwire and Barry Bonds.

$$
\begin{aligned}
& E=t_{\alpha / 2} \wedge \sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}} \\
& E=1.994 \wedge \sqrt{\frac{45.5^{2}}{70}+\frac{30.6^{2}}{73}} \\
& E=13.0
\end{aligned}
$$

Using TI Calculator:	
1	$\begin{gathered} 2 \text { 2-SampTInt } \\ \text { InPt:0ata Buats } \\ \text { x1:418.5 } \\ \text { Sx1:45:5 } \\ \text { n1:403.7 } \\ \text { S2:2:S0.7 } \\ \text { 4n2: } \end{gathered}$

Assumptions

1. The sample data consist of matched pairs.
2. The samples are simple random samples.
3. Either or both of these conditions is satisfied: The number of matched pairs of sample data is $(n>30)$ or the pairs of values have differences that are from a population having a distribution that is approximately normal.

Copyright © 2004 Pearson Education, Inc.

Notation for
 Matched Pairs

$\mu_{d}=$ mean value of the differences \boldsymbol{d} for the population of paired data
$\overline{\boldsymbol{d}}=$ mean value of the differences \boldsymbol{d} for the paired sample data (equal to the mean of the $x-y$ values)
$\boldsymbol{S}_{\boldsymbol{d}}=$ standard deviation of the differences \boldsymbol{d} for the paired sample data
$n=$ number of pairs of data.

McGwire Versus Bonds

Slide 32
Using the sample data given in the preceding example, construct a 95% confidence interval estimate of the difference between the mean home run distances of Mark McGwire and Barry Bonds.

$$
\begin{gathered}
(418.5-403.7)-13.0<\left(\mu_{1}-\mu_{2}\right)<(418.5-403.7)+13.0 \\
1.8<\left(\mu_{1}-\mu_{2}\right)<27.8
\end{gathered}
$$

We are 95% confident that the limits of 1.8 ft and 27.8 ft actually do contain the difference between the two population means.

Notation for Matched Pairs	
$\mu_{d}=$ mean value of the differences \boldsymbol{d} for the population of paired data	
$\overline{\boldsymbol{d}}=$ mean value of the differences \boldsymbol{d} for the paired sample data (equal to the mean of the $x-y$ values)	
$S_{d}=$ standard deviation of the differences d for the paired sample data	
$n=$ number of pairs of	

Test Statistic for Matched
Pairs of Sample Data

$\boldsymbol{t}=\frac{\bar{d}-\mu_{d}}{\frac{s_{d}}{\sqrt{n}}}$
where degrees of freedom $=n-1$

P-values and
Critical Values
Use Table A-3 (t-distribution).

aright 2004 Pearson Education, Inc

$\overline{\mathrm{d}}=-13.2, \mathrm{~s}=10.7, \mathrm{n}=5$
$t_{\alpha / 2}=2.776$ (found from Table A-3 with 4 degrees of freedom and 0.05 in two tails)

$$
\begin{gathered}
\overline{\boldsymbol{d}}-\boldsymbol{E}<\boldsymbol{\mu}_{\boldsymbol{d}}<\overline{\boldsymbol{d}}+\boldsymbol{E} \\
\text { where } \boldsymbol{E}=\boldsymbol{t}_{\alpha / 2} \frac{s_{d}}{\sqrt{n}} \\
\text { degrees of freedom }=n-1
\end{gathered}
$$

$$
7
$$

Are Forecast
Temperatures Accurate?
$E=\boldsymbol{t}_{\alpha / 2} \frac{s_{d}}{\sqrt{n}}$
$E=(2.776)\left(\frac{10.7}{\sqrt{5}}\right)$
$=13.3$

Using TI Calculator:

Measures of Variation
$s=$ standard deviation of sample
$\sigma=$ standard deviation of population
$s^{2}=$ variance of sample
$\sigma^{2}=$ variance of population

Notation for Hypothesis

Tests with Two Variances
$s_{1}^{2}=l a r g e r$ of the two sample variances
$n_{1}=$ size of the sample with the larger variance
$\sigma_{1}^{2}=$ variance of the population from which the sample with the larger variance was drawn

The symbols $\boldsymbol{S}_{2}^{2}, \boldsymbol{n}_{2}$, and σ_{2}^{2} are used for the other sample and population.

Copyright © 2004 Pearson Education, Inc.

* All one-tailed tests will be right-tailed.
* All two-tailed tests will need only the critical value to the right.
* When degrees of freedom is not listed exactly, use the critical values on either side as an interval. Use interpolation only if the test statistic falls within the interval.

Test Statistic for Hypothesis Tests with Two Variances

$$
F=\frac{S_{1}^{2}}{S_{2}^{2}}
$$

Critical Values: Using Table A-5, we obtain critical F values that are determined by the following three values:

1. The significance level α.
2. Numerator degrees of freedom $\left(d f_{1}\right)=n_{1}-1$
3. Denominator degrees of freedom $\left(d f_{2}\right)=n_{2}-1$

Copyright © 2004 Pearson Education, Inc.

1. The two populations

are independent of each other.
2. The two populations are each normally distributed.

Copyright © 2004 Pearson Education, Inc.

$$
F=\frac{S_{1}^{2}}{S_{2}^{2}}
$$

Critical Values: Using Table A-5, we obtain
critical F values that are determined by the
following three values:

1. The significance level α.
2. Numerator degrees of freedom $\left(d f_{1}\right)=n_{1}-1$
3. Denominator degrees of freedom $\left(d f_{2}\right)=n_{2}-1$
Copyrignte 2004 Parson Eidacation, Inc.

If the two populations do have equal variances, then $F=\frac{S_{1}^{2}}{s_{2}^{2}}$ will be close to 1 because s_{1}^{2} and s_{2}^{2} are close in value.

If the two populations have radically different variances, then F will be a large number.

Remember, the larger sample variance will be s_{1}.

Coke Versus Pepsi

Claim: $\sigma_{1}^{2}=\sigma_{2}^{2}$
$H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$
$H_{1}: \sigma_{1}^{2} \neq \sigma_{2}{ }^{2}$
$\alpha=0.05$

$$
\text { Value of } F=\frac{s_{1}^{2}}{s_{2}^{2}}
$$

$$
=\frac{0.007507^{2}}{0.005701^{2}}
$$

$$
=1.7339
$$

Coke Versus Pepsi

Data Set 17 in Appendix B includes the weights (in pounds) of samples of regular Coke and regular Pepsi. Sample statistics are shown. Use the 0.05 significance level to test the claim that the weights of regular Coke and the weights of regular Pepsi have the same standard deviation.

Regular Coke	Regular Pepsi
$\mathbf{3 6}$	$\mathbf{3 6}$
0.81682	0.82410
0.007507	0.005701

Copyright © 2004 Pearson Education, Inc.

There is not sufficient evidence to warrant rejection of the claim that the two variances are equal.

Finding Lower Critical F Values

\qquad

1) Use F_{R} indicates the critical value for right tail and F_{L} indicates the critical value for the left tail.
2) Interchange the degrees of freedom.
3) F_{L} is the reciprocal of the F value found in the table.
For example: $n_{1}=7, n_{2}=10, \alpha=0.05$
Answer: $\mathbf{F}_{\mathrm{L}}=\mathbf{0 . 1 8 1 0}, \mathrm{F}_{\mathrm{R}}=\mathbf{4 . 3 1 9 7}$
